Abstract

Autophagy is a dynamic process that degrades intracellular proteins and damaged organelles, and maintains environmental stability within the cell and provides good conditions for cell survival. Hyperoxic acute lung injury (HALI) is one of the serious complications of clinical oxygen therapy. The pathogenesis of HALI is still unclear. There are studies having shown that autophagy is involved in the pathogenesis of HALI. There are many pathway mechanisms that regulate autophagy, including phosphatidylinositol-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway, mitogen-activated protein kinase/extracellular signaling-regulated protein kinase (MAPK/ERK) signaling pathway, adenosine 5'-monophosphate-activated protein kinase/unc-51 like autophagy activating kinase 1 (AMPK/ULK1) signaling pathway, transforming growth factor β (TGF-β) and forkhead box O1 (FoxO1) and Ras guanosine triphosphatease superfamily member Rab11a, each of which is referred to as microRNA-21-5p (miR-21-5p) target gene having a role in regulating autophagy activity in many diseases. In this paper, the above-mentioned signaling pathways of miRNA-21-5p target genes regulating autophagy were reviewed in order to find clues about the mechanism of miRNA-21-5p regulating autophagy in HALI and provide a theoretical basis for subsequent basic research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call