Abstract
The zebrafish (Danio rerio) has been proposed as a low-cost and simple alternative to the use of higher vertebrates in laboratory research on novel compounds with antinociceptive potential. In this study, we tested adult zebrafish (Danio rerio) as an alternative behavioral model of formalin-induced nociception. We evaluated the nociceptive effect of 0.1% formalin (3 or 5 μL; intramuscularly [i.m.]), applied into the tail or lips, on locomotor activity, using as parameter the number of times the fish crossed the lines between the quadrants of a glass Petri dish during the neurogenic stage (0-5 min) and the inflammatory stage (15-30 min). The behavioral model was validated by testing the antinociceptive effect of morphine and indomethacin (standard analgesic drugs used in the formalin test of rodents). We also tested whether the effect of morphine could be modulated by naloxone, an opioid antagonist. The effect of morphine and indomethacin on zebrafish locomotor behavior was evaluated with the open field test. The white/black test was used to rule out the anxiolytic effect of 0.1% formalin injected into the tail on adult zebrafish. Formalin (0.1%; 3 and 5 μL injected into the tail) increased significantly the nociceptive behavior of the adult zebrafish in both stages (p < 0.001 vs. control). Morphine and indomethacin (both 0.2 mg/mL; 20 μL; intraperitoneally [i.p.]) significantly inhibited nociception induced with formalin (5 μL injected i.m. into the tail) in both stages (p < 0.001). Naloxone blocked the antinociceptive effect of morphine. No influence on locomotion was observed. Locally administered formalin (injected into the tail) induced nociception, but not anxiety. The results suggest that the adult zebrafish behavioral model is a feasible alternative to more conventional laboratory models used in research on novel compounds with antinociceptive potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.