Abstract

Insulin-like growth factor-I (IGF-I), long thought to provide critical trophic support during development, also has emerged as a candidate for regulating ongoing neuronal production in adulthood. Whether and how IGF-I influences each phase of neurogenesis, however, remains unclear. In the current study, we used a selective model of growth hormone (GH) and plasma IGF-I deficiency to evaluate the role of GH and IGF-I in regulating cell proliferation, survival, and neuronal differentiation in the adult dentate gyrus. GH/IGF-I-deficient dwarf rats of the Lewis strain were made GH/IGF-I replete throughout development via twice daily injections of GH, and then GH/IGF-I deficiency was initiated in adulthood by removing animals from GH treatment. Bromodeoxyuridine (BrdU) labeling revealed no effect of GH/IGF-I deficiency on cell proliferation, but adult-onset depletion of GH and plasma IGF-I significantly reduced the survival of newly generated cells in the dentate gyrus. Colabeling for BrdU and markers of immature and mature neurons revealed a selective effect of GH/IGF-I deficiency on the survival of more mature new neurons. The number of BrdU-labeled cells expressing the immature neuronal marker TUC-4 did not differ between GH/IGF-I-deficient and -replete animals, but the number expressing only the marker of maturity NeuN was lower in depleted animals. Taken together, results from the present study suggest that, under conditions of short-term GH/IGF-I deficiency during adulthood, dentate granule cells continue to be produced, to commit to a neuronal fate, and to begin the process of neuronal maturation, whereas survival of the new neurons is impaired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.