Abstract

Acquired memory initially depends on the hippocampus (HPC) for the process of cortical permanent memory formation. The mechanisms through which memory becomes progressively independent from the HPC remain unknown. In the HPC, adult neurogenesis has been described in many mammalian species, even at old ages. Using two mouse models in which hippocampal neurogenesis is physically or genetically suppressed, we show that decreased neurogenesis is accompanied by a prolonged HPC-dependent period of associative fear memory. Inversely, enhanced neurogenesis by voluntary exercise sped up the decay rate of HPC dependency of memory, without loss of memory. Consistently, decreased neurogenesis facilitated the long-lasting maintenance of rat hippocampal long-term potentiation in vivo. These independent lines of evidence strongly suggest that the level of hippocampal neurogenesis play a role in determination of the HPC-dependent period of memory in adult rodents. These observations provide a framework for understanding the mechanisms of the hippocampal-cortical complementary learning systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.