Abstract

The African clawed frog, Xenopus laevis, has been reported to tolerate long-term fasting without dormancy. However, the strategies for energy acquisition during fasting are unclear in this species. We performed 3- and 7-month fasting experiments to investigate how the metabolism of male X. laevis changes during long-term fasting. We found that the levels of several serum biochemical parameters, such as glucose, triglycerides, and free fatty acids, as well as liver glycogen were reduced after 3months of fasting, whereas after 7months of fasting, triglyceride levels were reduced, and fat body wet weight was lower than that of fed group indicating the onset of lipid catabolism. In addition, transcript levels of gluconeogenic genes, such as pck1, pck2, g6pc1.1, and g6pc1.2, were increased in the livers of animals fasted for 3months, suggesting upregulation of gluconeogenesis. Our results raise the possibility that male X. laevis can tolerate much longer fasting than previously reported by utilizing several energy storage molecules. Further investigation of the effects of prolonged fasting on the metabolic switches from carbohydrates to lipids or amino acids in X. laevis is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.