Abstract

The strongest form of intralocus sexual conflict occurs when two conditions are met: (i) there is a positive intersexual genetic correlation for a trait and (ii) the selection gradients on the trait in the two sexes are in opposite directions. Intralocus sexual conflict can constrain the adaptive evolution of both sexes and thereby contribute to a species' 'gender load'. Previous studies of adult lifetime fitness of the same sets of genes expressed in both males and females have established that there is substantial intralocus conflict in the LHM laboratory-adapted population of Drosophila melanogaster. Here, we investigated whether a highly dimorphic trait-adult locomotory activity-contributed substantially to the established intralocus sexual conflict. To measure the selection gradient on activity level, both this trait and adult lifetime fitness were measured under the same environmental conditions to which the flies were adapted. We found significant phenotypic variation in both sexes for adult locomotory activity, and that the selection gradients on this variation were large and in opposite directions in the two sexes. Using hemiclonal analysis to screen 99% of the entire genome, we found abundant genetic variation for adult locomotory activity and showed that this variation occurs on both the X and autosomes. We also established that there is a strong positive intersexual genetic correlation for locomotory activity. These assays revealed that, despite the strong, extant sexual dimorphism for the trait, locomotory activity continues to contribute strongly to intralocus sexual conflict in this population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call