Abstract

The body of evidence suggesting a causative, initiating role of beta amyloid (Aβ) in the pathogenesis of Alzheimer’s disease (AD) is substantial. Yet, only a few anti-amyloid agents have shown meaningful efficacy in clinical trials. We evaluated the unifying characteristics of anti-amyloid agents with positive clinical or biomarker effects in long-duration trials and analyzed how pharmacological characteristics determine their clinical product profiles. Four agents with the potential for near term approval fulfill these criteria: the injectable antibodies, aducanumab, gantenerumab, and BAN2401, and a small molecule oral agent, ALZ-801. Aducanumab and BAN2401 showed significant efficacy on both clinical and biomarker outcomes; gantenerumab showed significant biomarker effects, with no clinical efficacy reported to date; and ALZ-801 showed significant clinical effects in the high-risk population of patients homozygous for the ε4 allele of apolipoprotein E gene (APOE4) and a dose-dependent preservation of hippocampal volume. We explored how the pharmacological properties of these agents, namely selectivity for Aβ oligomers, plasma half-life, brain penetration, and time to peak brain exposure, determine their clinical profiles. A crucial characteristic shared by these agents is their ability to engage neurotoxic soluble Aβ oligomers, albeit to various degrees. Aducanumab and gantenerumab partially target oligomers, while mostly clearing insoluble amyloid plaques; BAN2401 preferentially targets soluble protofibrils (large oligomers) over plaques; and ALZ-801 blocks the formation of oligomers without binding to plaques. The degree of selectivity for Aβ oligomers and brain exposure drive the magnitude and onset of clinical efficacy, while the clearance of plaques is associated with vasogenic brain edema. Only the highest doses of aducanumab and BAN2401 show modest efficacy, and higher dosing is limited by increased risk of vasogenic edema, especially in APOE4 carriers. These limitations can be avoided, and efficacy improved by small molecule agents that selectively inhibit the formation or block the toxicity of Aβ oligomers without clearing amyloid plaques. The most advanced selective anti-oligomer agent is ALZ-801, an optimized oral prodrug of tramiprosate, which demonstrated efficacy in homozygous APOE4/4 AD subjects. ALZ-801 selectively and fully inhibits the formation of Aβ42 oligomers at the clinical dose, without evidence of vasogenic edema, and will be evaluated in a phase 3 trial in homozygous APOE4/4 patients with early AD. In addition to clinical measures, the phase 3 trial will include cerebrospinal fluid, plasma, and imaging biomarkers to gain further insights into the role of soluble Aβ oligomers in the pathogenesis of AD and their impact on disease progression.

Highlights

  • The central and early role of beta amyloid (Aβ) in the pathogenesis of Alzheimer’s disease (AD) is supported by numerous genetic, biomarker, and genome-wide association studies in both familial and sporadic AD [1]

  • Further evidence for the upstream role of Beta amyloid (Aβ) in driving tau pathology and cognitive decline in AD patients comes from recent longitudinal amyloid and tau positron emission tomography (PET) imaging studies

  • These studies show that cortical amyloid burden must reach a critical threshold before tau pathology spreads from the medial temporal lobes to the neocortex, expediting cognitive decline [9]

Read more

Summary

Introduction

The central and early role of beta amyloid (Aβ) in the pathogenesis of Alzheimer’s disease (AD) is supported by numerous genetic, biomarker, and genome-wide association studies in both familial (early-onset) and sporadic (late-onset) AD [1]. Several preclinical and clinical studies have shown that soluble Aβ oligomers, rather than insoluble aggregates that form plaques and fibrils, are the key amyloid species that initiate neurotoxicity and disease progression in AD [4,5,6,7,8]. Further evidence for the upstream role of Aβ in driving tau pathology and cognitive decline in AD patients comes from recent longitudinal amyloid and tau positron emission tomography (PET) imaging studies These studies show that cortical amyloid burden must reach a critical threshold before tau pathology spreads from the medial temporal lobes to the neocortex, expediting cognitive decline [9]. This sequence of pathologies implies that amyloid targeted agents should reduce downstream tau pathology and cognitive decline, which is what has been observed in recent clinical trials

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.