Abstract
Fibrous membranes based on poly(ethylene oxide) and poly(l-lactide) fabricated by electrospinning were evaluated for the first time as substrates for the adsorption of tetravalent thorium (Th(IV)) and hexavalent uranium (U(VI)) from aqueous media. The membranes consisted of microfibers with diameters of approximately 2 μm as revealed by scanning electron microscopy. The adsorption of Th(IV) and U(VI) on the membrane was investigated as a function of pH, ionic strength and initial metal concentration under normal atmospheric conditions. The experimental data indicated increased affinity of the membrane for Th(IV) and U(VI), which was pH depended and reaches maximum values (>90 %) for Th(IV) and U(VI) at pH 3 and pH 6.5, respectively. The maximum adsorption capacity (qmax) at optimum conditions was evaluated from the Langmuir isotherm and was found to amount 50.08 and 9.3 mmol kg−1 for Th(IV) and U(VI), respectively. In addition, studies on the effect of ionic strength on the adsorption efficiency did not show any significant effect indicating that the adsorption of Th(IV) and U(VI) on the membrane was most probably based on specific interactions and the formation of inner-sphere surface complexes. The significantly higher adsorption efficiency of the membrane for Th(IV) in acidic media (pH ≤ 3) could be utilized for a pH-triggered, selective separation of Th(IV) from U(VI) from aqueous media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.