Abstract

The removal of tannin from aqueous media by cationic surfactant-modified bentonite clay was studied in a batch system. The surfactant used was hexadecyltrimethylammonium chloride. Adsorbent characterizations were investigated using X-ray diffraction, infrared spectroscopy, surface area analysis, and potentiometric titration. The effects of pH, contact time, initial solute concentration, adsorbent dose, ionic strength, and temperature on the adsorption of tannin onto modified clay were investigated. The adsorbent exhibited higher tannin removal efficiency ( > 99.0 % ) from an initial concentration of 10.0 μmol/L at pH 3.0. Adsorption capacity decreased from 90.1 to 51.8% with an increase in temperature from 10 to 40 °C at an initial concentration of 25.0 μmol/L. The adsorption process was found to follow pseudo-first-order kinetics. Film diffusion was found to be the rate-limiting step. Tannin adsorption was found to decrease with increase in ionic strength. The tannin equilibrium adsorption data were fitted to Langmuir and Freundlich isotherm models, the former being found to provide the best fit of the experimental data. The maximum monolayer adsorption capacity for tannin was 69.80 μmol/g at 30 °C. Comparison of adsorption capacity of the modified clay with reported adsorbents in the literature was also presented. Adsorbed tannin on modified clay can be recovered by treatment with 0.1 M NaOH solution. Regeneration experiments were tried for four cycles and results indicate a capacity loss of < 10.0 % . From the results it can be concluded that the surfactant-modified clay could be a good adsorbent for treating tannin-contaminated waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.