Abstract
An invaluable utilization approach for industrial wastes is to employ them as effective adsorbents for environmental pollutants. This study aimed to investigate the phosphorus (P) adsorption behavior of coal wastes and zeolite in three forms of pristine powder (CP and ZP), nanoparticles (CNP and ZNP), and Fe (III)-modified nanoparticles (MCNP and MZNP). The adsorbents were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) analyses. The effects of pH, initial P concentration, and contact time were studied under batch mode. Results showed an optimum pH range of 2-6 for the P adsorption process. The pseudo-second-order kinetic model and the Langmuir isotherm described the P adsorption data well. The P adsorption capacity of the studied adsorbents was enhanced after modifications. However, the coal-based modified adsorbents represented higher P adsorption performances rather than the zeolite ones. The maximum P adsorption capacity (Qmax) values were obtained as 0.36, 3.23, and 30.48 mg g-1 for CP, CNP, and MCNP, and 0.80, 2.84, and 6.99 mg g-1 for ZP, ZNP, and MZNP, respectively. The surface complexation, ligand exchange, and electrostatic attraction processes were identified as the main P adsorption mechanisms by the studied adsorbents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.