Abstract

The objective of this work is to study the phosphate adsorption from natural waters by using a granular activated carbon (GAC). Experiments were carried out with synthetic solutions of phosphate prepared using groundwater (mineralized drinking water). Batch tests were carried out in order to study different operating parameters such as the effect of contact time, pH, initial phosphate concentration and adsorbent dosage. In addition, the adsorption kinetic data were simulated using the pseudo first order, the pseudo second-order and the intra-particle diffusion model. The sorption equilibrium was analyzed by Langmuir, Freundlich and Dubinin–Radushkevich isotherms model. Results show that the phosphate adsorption was reversible and the quantity adsorbed reached its maximum value (2.82 mg/g) after 30 min. It was also found that phosphate uptake was affected by variation of pH, initial concentration of phosphate and granular activated carbon dosage. The adsorption improved with increase in pH values, initial concentration and adsorbent dosage. The results of kinetic studies revealed that pseudo-second-order model adequately described the adsorption phosphate on GAC and the intra-particle diffusion involved in the adsorption mechanism. Also, isotherm study showed that Langmuir isotherm best fit the data and the adsorption was a physical type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.