Abstract

The aim of this work is to investigate the ability of a new functionalized graphene oxide 3-amino-5-phenylpyrazole (F-GO) in the adsorption and removal of Hg2+ from aqueous solution. Both untreated graphene oxide (GO) and F-GO were characterized using FT-IR, EDX, FE-SEM, XRD and TGA analysis. The effects of three operational variables (pH, adsorbent dose and initial metal ion concentrations) on Hg2+ adsorption capacity of F-GO were investigated by central composite design. This technique aims to find a simple way to optimize the adsorption process and to analyze the interaction between the significant parameters. A quadratic model suggested for the analysis of variance found that the adsorption of metal ions heavily depend upon pH of the solution. The adsorption mechanism has been determined by pseudo-first-order kinetic models and the adsorption behavior was modeled by Freundlich isotherm. Results demonstrated that the adsorption capacities of F-GO for removal of Hg2+ were generally higher than those of GO, which is attributed to a decrease in the agglomeration of graphene layers due to the presence of amino-functional moieties with their bulky phenyl groups. Thermodynamic data indicated that the functionalization significantly affects the thermostability of the GO precursor materials. The desorption study demonstrated favorable regenerability of the F-GO adsorbent, even after three adsorption–desorption cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.