Abstract

A study was conducted to investigate the efficiency of iron oxide nanoparticle (FeONPs) adsorption for removing of DOM in landfill leachate. FeONPs was directly prepared via sodium borohydride (KBH4) reduction method. Adsorption kinetics, isotherm and thermodynamic studies were developed to design the model for DOM removal. Pseudo first-order and pseudo second-order model have been studied to fit the experimental data. The regression results showed that the adsorption kinetics were more accurately represented by a pseudo second-order model. The Weber–Morris intraparticle diffusion model was used to analyze the adsorption kinetics data. The plot of qt versus t1/2 represents multi linearity, which showed that the adsorption processes occurred in more than one step. Adsorption isotherms were analyzed by Langmuir, Freundlich, Tempkin and Dubinin–Radushkevich, isotherms model. Equilibrium data were well fitted to the Dubinin– Radushkevich isotherm model. Maximum monolayer adsorption based on Langmuir was calculated to be 21.74 mg/g. Thermodynamic parameters such as free energy changes (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were evaluated between temperatures of 25 °C and 40 °C. The ΔG° was noticed progressively decrease from -9.620 -9.820 -10.021, and -10.222 kJ/mol as the temperature increase. The ΔH° and ΔS° values were found to be 2.350 kJ/mol and 40.165 J/mol.K respectively. The results showed that the overall adsorption process was endothermic and spontaneous. The results from this study suggested that FeNPs could be a viable adsorbent in managing higher DOM problems associated with landfill leachate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.