Abstract
In the current study, synthesis and use of a novel adsorbent (composite in nature) are presented for treatment of one of the most commonly found pharmaceutical compound, viz, diclofenac sodium (DCF) in waste water. Synthesis of the composite adsorbent was done by hydrothermal method metal organic framework (MOF) based on Zr metal and multi-walled carbon nanotube (MWCNT). The composite adsorbent is termed as UiO-66/MWCNT. The confirmation of successful synthesis of the adsorbent is done with the help of sophisticated characterization techniques like FTIR, XRD, zeta potential analyser, and SEM. The synthesized composite adsorbent is found to have good adsorption capacity for DCF. The experiments related to the process of adsorption were done in batch mode and the significance of various operating parameters affecting the specific uptake of DCF. Maximum adsorption is observed at 3 pH (acidic condition) when the initial concentration of DCF and adsorbent dose was 30 mg/L and 100 mg/L, respectively. The Langmuir isotherm model best describes the process of adsorption with a maximum adsorption capacity of 256.41 mg/g. Experimental results obtained through the studies conducted related to the kinetics displayed that the process followed pseudo-second order model, and intraparticle studies suggested that diffusion through pores controls the rate. Thermodynamic studies suggest that the adsorption of DCF on UiO-66/MWCNT was completely spontaneous with ΔH = -22.089 kJ/mol. The possible mechanism for the adsorptive removal of DCF through UiO-66/MWCNT as found from this study is electrostatic interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.