Abstract

In this study, bio-polymeric gel beads were made from synthetic and laboratory-made CMC (bagasse). Calcium chloride cross-linked with sodium alginate (Na-Alg) added to CMC displayed great affinity for the removal of hexavalent chromium (Cr(VI)) ions present in an aqueous solution. Activated carbon obtained from bagasse was also used for adsorptive removal of Cr(VI) ions from aqueous solution. The effect of different adsorption parameters such as pH, contact time and adsorbent dosage was studied. Bio-polymeric gel beads and activated carbon were prepared and characterized by SEM, FTIR and XRD. The maximum percentage removal for synthetic and bagasse bio-polymeric gel beads reaches 94.56% and 98.42% values at a pH of 4.0 at 25 °C and for activated carbon 64.79% value at a pH of 6.0 at 25 °C. Higher degree of substitution results in an increase in the percentage removal of Cr(VI) ions due to the increase in the surface area and the binding sites of the adsorbent. Our study suggests that bio-polymeric gel beads made from laboratory-made CMC (bagasse) can be used in a more cost-effective and efficient way for the removal of harmful chromium ions.

Highlights

  • IntroductionWidely used in industrial wastewater, are extremely toxic to human kidneys, liver, lungs and intestines

  • Heavy metals, widely used in industrial wastewater, are extremely toxic to human kidneys, liver, lungs and intestines

  • We focus on bio-polymeric gel beads made from carboxymethyl cellulose (CMC)

Read more

Summary

Introduction

Widely used in industrial wastewater, are extremely toxic to human kidneys, liver, lungs and intestines. Discarded chromium (Cr) is a general toxic heavy metal pollutant present in wastewater, where it basically exists in two stable oxidation states, i.e., trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)). Chromium is widely used in industries like electroplating, leather tanning, ceramics, pigment manufacturing, ceramics, wood preservation and manufacturing of paper. Chromium is used in leather tanning process in large quantity to stop water diffusion inside leather pores. Cr(VI) is primarily present in the form of chromate ­(CrO42−) and dichromate ­(CrO72−) ions. On the other hand the Cr(VI) is 500 times more

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call