Abstract
AbstractAs(III) removal from aqueous solution was conducted using low-cost adsorbents like unmodified raw coconut husk (RCH) and modified iron impregnated coconut husk (IICH). Prepared both adsorbents was characterisation by using elemental analyses, FTIR, TGA, SEM and EDX. The analysis behaviour indicates, both adsorbents are highly suitability for As(III) removal. The effects of operational parameters, such as pH, adsorbent dose and initial concentration on these adsorbents were investigated and compared with other agriculture based adsorbent. The result reveals that the As(III) removal capacity is effective in the pH range of 6.2–7.8 and the optimum pH and adsorbents dose was found as 7.0 and 40 g l−1, for RCH and IICH, respectively. Kinetic and equilibrium studies over a wide range of operating conditions are tested to evaluate the effectiveness of RCH and IICH to remove As(III) from water. The values of bothkf1andks2values are found to be nearly same and same trend was observed at higher 50 mg l−1and lower arsenic concentration 25 mg l−1for RCH and IICH. But the kinetic data is fitted better in the pseudo-second-order kinetic model than the pseudo-first order model. The effective intraparticle diffusion coefficient of As(III) ions in RCH and IICH is observed to be 2.145×10−9 cm2s−1and 1.838×10−10 cm2s−1, which indicates that the overall As(III) adsorption on both adsorbents are intraparticle diffusion control. Equilibrium isotherms for the adsorption of As(III) on RCH and IICH were analyzed at different dose and different initial concentration. At different concentration system, Freundlich isotherm and Redlich-Peterson are best fitted followed by Langmuir and Temkin isotherm models and for varying doses, all equilibrium models give almost similar fitness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Chemical Reactor Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.