Abstract

Arsenate and arsenite may exist simultaneously in groundwater and have led to a greater risk to human health. In this study, an iron–zirconium (Fe–Zr) binary oxide adsorbent for both arsenate and arsenite removal was prepared by a coprecipitation method. The adsorbent was amorphous with a specific surface area of 339 m 2/g. It was effective for both As(V) and As(III) removal; the maximum adsorption capacities were 46.1 and 120.0 mg/g at pH 7.0, respectively, much higher than for many reported adsorbents. Both As(V) and As(III) adsorption occurred rapidly and achieved equilibrium within 25 h, which were well fitted by the pseudo-second-order equation. Competitive anions hindered the sorption according to the sequence PO 4 3 - > SiO 3 2 - > CO 3 2 - > SO 4 2 - . The ionic strength effect experiment, measurement of zeta potential, and FTIR study indicate that As(V) forms inner-sphere surface complexes, while As(III) forms both inner- and outer-sphere surface complexes at the water/Fe–Zr binary oxide interface. The high uptake capability and good stability of the Fe–Zr binary oxide make it a potentially attractive adsorbent for the removal of both As(V) and As(III) from water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.