Abstract

Magnetic γ-Fe2O3/Al3+@chitosan-derived biochar (m-Fe2O3/Al3+@CB) was prepared by introducing magnetic maghemite (γ-Fe2O3) nanoparticles and aluminum sulfate [Al2(SO4)3] into chitosan-derived biochar (CB) obtained at low pyrolysis temperatures. m-Fe2O3/Al3+@CB was used to remove typical anionic azo dye (Congo red, CR). Effects of initial CR concentration, contact time, initial pH value, background electrolytes, and temperature on CR adsorption by m-Fe2O3/Al3+@CB were studied. Compared with magnetic chitosan-derived biochar (m-Fe2O3@CB), m-Fe2O3/Al3+@CB exhibited excellent performance for a wider range of pH values (pH 1-7) and in the presence of background electrolyte. The introduction of Al3+ is an effective method for improving the properties of magnetic chitosan-derived biochar. High CR adsorption capacity (636.94mgg-1) of m-Fe2O3/Al3+@CB could result from collaborative effect of flocculation/coagulation and electrostatic attraction. These results demonstrated that m-Fe2O3/Al3+@CB is a potential adsorbent for effective removal of organic dyes from aqueous solution due to its high adsorption capacity and convenient magnetic recovery and stronger anti-interference ability against coexisting anions in wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call