Abstract

ABSTRACT In this study, the sorption of Cs(I) and Sr(II) onto zirconium tin(IV) phosphate (ZrSnP) nanocomposite was achieved using the batch technique. ZrSnP has been prepared by the sol–gel technique and characterised using different analytical tools such as FT-IR, XRF, XRD, TGA & DTA, SEM, and TEM. The data obtained from this study showed that the sorption process was a fast equilibrium time (120 min). The distribution coefficients have sequence order; Cs(I) ˃ Sr(II). Reaction kinetic obeys the pseudo-second-order model. The capacity has the values 50.0, and 29.8 mg/g for Cs(I) and Sr(II), respectively. Sorption isotherms are more relevant to a Langmuir isotherm. Negative Gibbs energy values proved that the sorption process was spontaneous with high feasibility. Positive enthalpy values reveal that this process was endothermic. Positive entropy values showed that disorder between the solid–liquid phase increased during adsorption. The real sample study reveals that ZrSnP is a promising sorbent for the removal of 134Cs and 85Sr from low-level radioactive waste. The investigation proved that the ZrSnP is suitable for the removal of Cs(I) and Sr(II) from radioactive waste and could be considered potential material for purification of effluent polluted with these ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.