Abstract
To understand the effect of the acidity or basicity of porous metal-organic frameworks (MOFs) on the adsorptive removal of nitrogen-containing compounds (NCCs), an MOF (MIL-100(Cr)) was modified to impart acidity or basicity onto the MOFs. The modification was done by grafting ethylenediamine and aminomethanesulfonic acid onto coordinatively unsaturated sites of the MOF, MIL-100(Cr). The adsorptive removal of a basic quinoline or benzothiophene can be improved noticeably, especially at low concentrations, with the introduction of an acidic site; however, a basic MOF causes a severe decrease in the adsorptive performance for a basic adsorbate such as quinoline. The effect of the interaction of the base–base on adsorption was more severe or detrimental for a hard base quinoline than for a soft base benzothiophene. Functionalized MOFs show a slightly decreased adsorption for a neutral adsorbate such as indole probably because of the decreased porosity of the MOFs compared with the virgin MOF without functionalization. Moreover, a functionalized MOF (with SO3H group) can be used several times after simple washing with acetone. From the present research, it may be concluded that acid–base interactions between NCCs and MOFs will lead to favorable adsorptive removal of NCCs. However, for the adsorptive removal of a neutral adsorbate such as indole, another adsorption mechanism (such as π-complexation or hydrogen-bonding) is needed for high uptake and efficient removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.