Abstract

Layered hexaniobate K4Nb6O17 was modified with dodecylammonium ions and octadecyltrimethoxysilane molecules, which were held in the interlayer spaces by electrostatic interactions and covalent attachment to the layers, respectively. Interlayer spacing of the niobate was expanded by incorporation of the bulky organic species. Vapor adsorption isotherms of benzene and water indicated hydrophobic interlayer microenvironments of the organically modified niobates. Both of the modified niobates fairly adsorbed phenol dissolved in water. The photocatalytic activity of hexaniobate allowed the organically modified materials to photocatalytically decompose phenol upon UV irradiation. Decomposition time courses and quantitative analysis of phenol present in the system indicated that the phenol molecules adsorbed on the niobates were preferentially degraded. XRD and IR analyses of the modified niobates indicated that the silylated niobate was more durable than the ion-exchanged sample; the former kept the structure during the photocatalytic process while the latter was partly collapsed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.