Abstract

The type and severity of faults occurring in gas-insulated switchgear (GIS) can be assessed by detecting SF6 decomposed gases, which is significant for fault diagnosis and online condition monitoring of GIS. Characteristic decomposition components of SF6 under partial discharge or overheating faults and first-principle density functional theory calculations are adopted to analyze the adsorption of SO2, SOF2, and SO2F2 on Pt-modified anatase (101) surface and to examine further the sensing mechanism of Pt-modified anatase-based gas sensor used to detect SO2, SOF2, and SO2F2. Results show that SO2F2 molecule more easily decomposes upon adsorption on the active Pt nanoparticle than SOF2 molecule. Meanwhile, SO2 molecule does not decompose. This finding explains the phenomenon in the sensing experiment of Pt-modified TiO2 nanotube array gas sensor, wherein the response of SO2F2 is higher than that of SOF2 at the optimal temperature of the sensor. Moreover, the responses of SO2F2 and SOF2 significantly change at the optimal temperature, whereas the response of SO2 is nearly unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.