Abstract

Water pollution arising from heavy metal ions continues to be a major environmental problem, which represents a serious threat to human beings and animals worldwide. New materials that can simultaneously detect and remove these toxic ions are urgently required. Herein, nitrogen and sulfur co-doped molybdenum selenide nanosheets (N, S-MoSe2) were prepared and found to be fluorescently responsive to mercury (II) with an improved adsorption capacity (208.33 mg g−1), thereby providing the possibility for the simultaneous detection and removal of mercury (II) in water samples. The great affinity was the result of the complexation of mercury (II) with Se and S atoms in N, S-MoSe2 as well as the electrostatic adsorption of cation mercury (II) on negatively charged N, S-MoSe2. Besides good sensitivity and selectivity toward mercury (II), N, S-MoSe2 displayed a relatively consistent performance under a wide pH range from 3 to 10. The removal efficiency reached 87.5% with fast adsorption kinetics, and N, S-MoSe2 could be reused after simple treatment. Thus, this work is expected to provide new material for the detection and removal of mercury (II) in an aqueous solution and offer an insight into the interaction between heavy metal ions and inorganic nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.