Abstract

The studies are conducted in laboratory to determine the adsorption-desorption behavior of BTX (benzene, toluene and o-xylene) in gas phase on Fe, Fe-Al pillared clays adsorbents. In experimental conditions of constant atmospheric pressure, initial concentrations with an increasing volume (0.5 - 2 ml) injected benzene (2.25), toluene (1.89) and o-xylene (1.66) μmol/L at T (40℃, 60℃ and 80℃), and the adsorption increases with increase of temperature, indicating that the adsorption process would be a chemical adsorption rather than physical one. The results are shown that the BTX adsorption data fitted very well (R2 > 0.999) to the both equations Langmuire and Elovitch for the three samples: bentonite (B), Fe-bentonite () and Fe-Al/bentonite (). At 80℃, the BTX adsorption capacity increased in the following order: . The maximum adsorption capacity () at 80℃ is 175.13, 171.84 and 171.81 μg/g respectively for benzene, toluene and o-xylene for ; the last is a good adsorbent of BTX removal. The benzene diffuses faster than toluene and o-xylene. Thermodynamic parameters, such as ,and are also discussed and the results suggested that the BTX adsorption on all samples used is a spontaneous and endothermic process. Desorption studies show that BTX is very easily desorbed with .

Highlights

  • The natural gas and oil industry activities are known for some time to create harmful air emissions that emit volatile organic compounds (VOCs) and oxides of nitrogen (NOX), which are precursors to tropospheric ozone

  • The purpose of this paper is to present the effectiveness of (Fe, Fe-Al)-pillared bentonite clay adsorbents to reduce the concentration of BTX and determine behavior of BTX with evaluating the influence of the temperature on BTX adsorption

  • The study of adsorption of aromatic BTX hydrocarbons on B, Fe B and Fe − Al B solids has shown that the adsorption of BTX is a function of temperature

Read more

Summary

Introduction

The natural gas and oil industry activities are known for some time to create harmful air emissions that emit volatile organic compounds (VOCs) and oxides of nitrogen (NOX), which are precursors to tropospheric ozone. The VOCs cause environmental concerns about their toxicity and malodor, even at very low concentrations, due to the obvious impacts on atmosphere and human health; it is necessary to limit and control this air emission. The pillared interlayer clay (PILC) attracts attention of many researchers, and constitutes one of the most widely studied series among the microporous materials with a wide range of potential applications in adsorption processes. The purpose of this paper is to present the effectiveness of (Fe, Fe-Al)-pillared bentonite clay adsorbents to reduce the concentration of BTX and determine behavior of BTX with evaluating the influence of the temperature on BTX adsorption. Adsorption isotherm is measured at three different temperatures: 40 ̊C, 60 ̊C and 80 ̊C

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.