Abstract

We have studied the adsorption, wetting, growth, and thermal evolution of the protic IL diethylmethylammonium trifluoromethanesulfonate ([dema][TfO]) on Au(111) and Ag(111). Ultrathin films were deposited at room temperature (RT) and at 90 K, and were characterized in situ by angle-resolved X-ray photoelectron spectroscopy. For both surfaces, we observe that independent of temperature, initially, a closed 2D wetting layer forms. While the film thickness does not increase past this wetting layer at RT, at 200 K and below, “moderate” 3D island growth occurs on top of the wetting layer. Upon heating, on Au(111), the [dema][TfO] multilayers desorb at 292 K, leaving an intact [dema][TfO] wetting layer, which desorbs intact at 348 K. The behavior on Ag(111) is much more complex. Upon heating [dema][TfO] deposited at 90 K, the [dema]+ cations deprotonate in two steps at 185 and 305 K, yielding H[TfO] and volatile [dema]0. At 355 K, the formed H[TfO] wetting layer partly desorbs (∼50%) and partly decomposes to form an F-containing surface species, which is stable up to 570 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.