Abstract

The effects of the sorption and the regeneration temperatures on the performance of a novel rapid thermal swing chemisorption (RTSC) process (Lee and Sircar in AIChE J. 54:2293–2302, 2008) for removal and recovery of CO2 from an industrial flue gas without pre-compression, pre-drying, or pre-cooling of the gas were mathematically simulated. The process directly produced a nearly pure, compressed CO2 by-product stream which will facilitate its subsequent sequestration. Na2O promoted alumina was used as the CO2 selective chemisorbent, and the preferred temperatures were found to be, respectively, 150 and 450 °C for the sorption and regeneration steps of the process. The specific cyclic CO2 production capacity of the process and the pressure of the by-product CO2 gas were substantially increased over those previously achieved by using the sorption and regeneration temperature of, respectively, 200 and 500 °C (Lee and Sircar in AIChE J. 54:2293–2302, 2008). The net compressed CO2 recovery from the flue gas (∼92%) did not change. However, substantially different amounts of high and low pressure steam purges were necessary for comparable degree of desorption of CO2. A first pass estimation of the capital and the operating costs of the RTSC process was carried out for a relatively moderate size application (flue gas clean up and CO2 recovery from a ∼80 MW coal fired power plant). Both costs were substantially lower than those for a conventional absorption process using MEA as the CO2 solvent (Desideri and Paolucci in Energy Convers. Manag. 40:1899–1915, 1999).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call