Abstract

The corrosion of mild steel is a significant issue in various industries, prompting the need for effective corrosion inhibitors. This study focuses on understanding the corrosion inhibition properties of organic compounds derived from isoxazole, namely series Iso(a), Iso(b), Iso(c), Iso(d), Iso(e), Iso(f), Iso(g), and Iso(h), which could have implications for materials science and industrial applications. By investigating the influence of different substitutions on these compounds, valuable insights can be gained into designing better corrosion inhibitors for practical use. Theoretical studies were conducted using density functional theory (DFT) with the B3LYP functional and the 6-31G (d,p) basis set. These calculations enabled the evaluation of various parameters including frontier orbital energies (EHOMO, ELUMO), energy gap (∆E), electronegativity (χ), absolute hardness (η), softness (σ), fraction of transferred electrons (∆N), as well as local properties such as natural atomic populations and Fukui indices. Additionally, molecular dynamics simulations were performed to study the adsorption behavior of the inhibitors on the surface of Fe (110). The simulations were conducted using Materials Studio version 8.0 software package using COMPASS force field to understand the impact of different functional groups on the inhibitors before and after adsorption on the iron surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call