Abstract

Iridium (Ir) exhibits a good efficiency for reduction of NO under excess O2 coexisting conditions at temperatures higher than 250 °C. On the other hand, the advantage is lost at lower temperatures below 250 °C under O2 existence, compared to any other platinum group metals. In this study, adsorption behavior of NO on Ir(111) single-crystal surfaces under excess O2 coexisting conditions at the temperatures from room temperature to 250 °C has been studied by in-situ X-ray Photoelectron Spectroscopy (XPS). It is revealed that the coexisting O2 induces formation of a high-density chemisorbed atomic oxygen (O) phase and the atomic O phase suppresses adsorption of NO at on-top sites significantly, which suggests that the suppression of NO adsorption causes a decrease in the ability of NO reduction at the lower temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.