Abstract
We use core level photoelectron spectroscopy and density functional theory (DFT) to investigate the iodine-induced Pd(1 1 1)–I(√3 × √3) structure formed at 1/3 ML coverage. From the calculations we find that iodine adsorbs preferentially in the fcc hollow site. The calculated equilibrium distance is 2.06 Å and the adsorption energy is 68 kcal/mol, compared to 2.45 Å and 54 kcal/mol in the atop position. The adsorption energy difference between fcc and hcp hollows is 1.7 kcal/mol. Calculated Pd 3d surface core level shift on clean Pd(1 l 1) is 0.30 eV to lower binding energy, in excellent agreement with our experimental findings (0.28–0.29 eV). On the Pd(1 1 1)–I(√3 × √3) we find no Pd 3d surface core level shift, neither experimentally nor theoretically. Calculated charge transfer for the fcc site, determined from the Hirshfeld partitioning method, suggests that the iodine atom remains almost neutral upon adsorption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.