Abstract
l-Tryptophan (l-Trp) was separated from its aqueous solution by hyper-cross-linked resins. The adsorption and desorption performances of l-Trp on different resins were compared. The weakly polar resin XDA-200 was selected as an excellent adsorbent with high adsorption amount and easy elution. The resin has a high adsorption selectivity and strong salt resistance. The adsorption mechanism of l-Trp on resin XDA-200 was elucidated based on adsorption thermodynamics experiments, molecular dynamics simulations, and adsorption kinetics experiments. The dynamic separation process of l-Trp was finally studied. The adsorption of l-Trp on resin XDA-200 is a spontaneous process driven by adsorption enthalpy. l-Trp± is the most favorable form for l-Trp adsorption on resin XDA-200 because of the strongest affinity of l-Trp± to the resin and relatively low water solubility. The adsorption of l-Trp is mainly based on π–π and hydrophobic interactions. Surface diffusion is the sole rate-limiting step of l-Trp mass transfer on resin XDA-200. l-Trp was separated satisfactorily from l-glutamic acid (l-Glu) and NaCl with both the recovery rate and purity of l-Trp higher than 99% in the fixed bed packed with resin XDA-200.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.