Abstract

The preparative separation of guanosine 5′-monophosphate (GMP) and cytidine 5′-monophosphate (CMP) on mixed-mode resin HD-1 was experimentally and theoretically investigated. The adsorption mechanisms of the two nucleotides were elucidated by analyzing adsorption equilibria and kinetics at different pH values. The adsorption dynamics of GMP and CMP in a fixed bed packed with resin HD-1 were studied. All nucleotide monovalent cations, zwitterions, and monovalent anions were adsorbed by the resin. Further, a general adsorption isotherm model was developed by considering the adsorption of different nucleotide species and the dissociation equilibrium behaviors of resin ligands. The model fit the adsorption isotherm data of GMP and CMP well. A modified liquid-film linear driving force model with the combined physical adsorption of nucleotides in different dissociation states and ion exchange of Na+ was established. The dissociation equilibria of resin ligands and nucleotides were considered. The model satisfactorily predicted the adsorption kinetic data at different pH values. The values of the efficient diffusion coefficients for GMP and CMP were not significantly influenced by the solution pH. A modified transport-diffusion model with pH gradient elution was proposed. The model accurately predicted the elution chromatographic peaks of GMP and CMP, as well as the pH at the outlet of the fixed bed packed with resin HD-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call