Abstract

The dazzling adsorbent products make people overlook the harm of heavy metals adsorbed on them. Hazardous waste adsorbents cause secondary pollution. In this study, waste lignocellulose was dissolved by alkaline urea solvent and high-intensity ultrasound, then cross-linked by epichlorohydrin to make hydrogel, which was utilized to adsorb toxic heavy-metal wastewater. In situ deposition and high-temperature carbonization turn the gel that has absorbed heavy metals into carbon aerogel-loaded metal oxide energy storage materials that may be employed as anodes in lithium-ion batteries with excellent electrochemical performance. The best reversible capacity was 435.86 mAh g-1 after 100 cycles at 0.2C, indicating that the hazardous solid waste generated by the removal of heavy metals using biomass-based adsorbent has potential lithium battery applications. Thus, we provide a fresh perspective on the efficient recycling of heavy metals as well as an environmentally friendly, high-value conservation strategy for lowering the danger of heavy-metal hazardous wastes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.