Abstract

This study utilized a 1% chitosan solution (dissolved in 2% acetic acid), with a chitosan-to-zeolite mass ratio of 0.005, to successfully prepare chitosan-loaded natural zeolite. The performance of chitosan-modified natural zeolite in the removal of low-concentration cadmium ions in the presence of micropollutants was investigated. The adsorbent was characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM)/energy-dispersive spectroscopy (EDS) techniques. The impact of modified adsorbent dosage, pH value, contact time, temperature, and initial concentration on adsorption performance was discussed. Additionally, the adsorption kinetics, isotherms, and thermodynamics of cadmium on chitosan-modified zeolites were analyzed. The results indicated that the modified zeolite exhibited a dispersed and porous structure with increased surface area, average pore size, and total pore volume. Under the conditions of 25 °C, pH 6, a dosage of 8 g/L, and a 60 min adsorption reaction time, chitosan-loaded natural zeolite (CNZ) achieved a removal efficiency of over 94.51% for a 100 μg/L cadmium solution (in a 100 mL volume). The adsorption process followed the Langmuir model, suggesting monolayer adsorption. The adsorption kinetics followed a pseudo-second-order equation, indicating an exothermic process with an increase in entropy. Chitosan-loaded natural zeolite demonstrated improved adsorption capacity and effectively removed cadmium from water contaminated with micropollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.