Abstract

AbstractDensity functional theory (DFT) calculations were carried out in this work to systematically investigate the adsorption properties of monolayer black phosphorene (BP) for actinide uranium (U), thorium (Th), and plutonium (Pu) atoms. More specifically, the linear response method was used and the HubbardUvalues of 2.97 and 2.61 eV were fitted describing the strong lattice point Coulomb interactions of the U and Pu 5forbitals, respectively. From the DFT + Ucalculations, it was demonstrated that the U, Th, and Pu atoms can be favorably adsorbed on the hollow sites of the BP surface, with an adsorption energy of 3.48, 4.93, and 0.98 eV, respectively. By analyzing the electronic structure, charge transfer, and highest occupied molecular orbital, it was revealed that the U and Th adatoms can induce the generation of impurity states within the band gap of BP and stabilize their adsorption by strongp‐dcoupling with the phosphorus atoms. In addition, from the electron–phonon coupling calculations, it was revealed that the temperature for the stable adsorption of the U and Th adatoms can reach as high as 500 and 673 K. By using the adsorption rate equation, the critical temperature for the adsorption–desorption transition of U and Pu adatoms was estimated to be 632 and 185 K, respectively, while the Th adatom did not tend to desorb. Our results clearly indicate that BP is an ideal adsorption and separation material for actinides with promising potential applications, such as uranium extraction from seawater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.