Abstract
AbstractWaste poly(p‐phenylene terephthalamide) fibers (PPTA) were chemically modified through nitration and nitro‐reduction reactions to obtain nitro‐ and amino‐containing fibers and used as adsorbents for metal ions. The structures of the modified fibers were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X‐ray diffraction (XRD), and thermogravimetric (TG) analysis. Metal ions, such as Ni2+, Pb2+, Cu2+, and Hg2+, were used to determine the adsorption capacities of the PPTA fibers before and after modification in aqueous solutions. The results showed that the modification improved the adsorption capability of fibers and extraction ratio of metal ions significantly. The adsorption mechanism of modified PPTA fibers for metal ions was proposed. The adsorption processes of Ni2+, Pb2+, and Cu2+ followed well a pseudosecond‐order model onto PPTA‐NH2. The Langmuir and Freundlich models were employed to fit the isothermal adsorption. The results revealed that the linear Langmuir isotherm model is better‐fit model to predict the experimental data. Copyright © 2010 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.