Abstract

Astilbin (AST), isoastilbin (ISO), and engeletin (ENG) are the main flavonoids in Rhizoma Smilacis Glabrae (RSG) and have many biological activities. In this study, the adsorption kinetics of AST, ISO, and ENG on HPD-300 resin was investigated and their adsorption processes conformed to a pseudo-second-order kinetics equation. The fitting curves of the intraparticle diffusion model showed three linear stages and did not pass through the origin, meaning the adsorption process of the three flavonoids was controlled by boundary layer diffusion and intraparticle diffusion. Their adsorption isotherms were also constructed and could be well-fitted by the Langmuir equation. A low temperature was favorable for their adsorption. The relative adsorption capacity of ENG was significantly higher than those of the other two compounds, indicating that the substitution pattern on ring B has an important impact on the adsorption of flavonoids with resin. The separation process was optimized by dynamic adsorption/desorption experiments. After separation, the purities of AST, ISO, and ENG increased from 5.55%, 1.22%, and 0.45% to 27.46%, 6.14%, and 2.27%, respectively, and all the recoveries exceeded 75%. After that, the three compounds were further separated by preparative HPLC and silica gel chromatography. In the final product, the purities of AST, ISO, and ENG could reach above 98%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call