Abstract
Abstract Wood fibers, bamboo fibers and rice husk were applied to the adsorption of uranium from aqueous solution to understand the uranium adsorption behavior and mechanism by these natural sorbents. The effects of time, adsorbent particle size, pH, adsorbent dosage, temperature and initial concentration were studied using batch technique. The adsorption mechanism was discussed by isothermal adsorption models, adsorption kinetic models. The results suggested that the three biomass adsorbents showed great efficiency of adsorption for uranium. The adsorption capacity of biosorbents of comparatively small particle size and large dosage is quite high. Uranium adsorption achieved a maximum adsorption amount at around pH 3 for wood fibers and bamboo fibers, and around pH 5 for rice husk. All isotherms fitted well to the Langmuir Freundlich and D-R equation, indicating that the adsorption process is favorable and dominated by ion exchange. Rice husk had a highest adsorption capacity, followed by bamboo fibers, while wood fibers had little uranium adsorption under the studied conditions, and the adsorption capacity was 12.22, 11.27 and 11.04 mg/g, respectively. The equilibrium data was well represented by the pseudo-second-order kinetics, indicating that the adsorption rate was controlled by chemical adsorption. Ion exchange was the main adsorption mechanism, and the exchange ions were mainly Na+ and K+.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.