Abstract

The removal of Pb ions by activated carbons prepared from velvet tamarind (Dialium indum) shells was studied to investigate its uptake potentials using column sorption at different operating conditions (flow rates, initial concentrations and bed height). The prepared adsorbent was characterized by determining the physicochemical properties, proximate analysis, carbon, Hydrogen, Nitrogen and Sulpur analysis, Fourier Transform-Infra Red, Potentiometric titration. Different dynamic models were used to describe the sorption processes. The FTIR analysis results suggested the presence of functional groups such as hydroxyl, carbonyl, carboxyl and amine which could bind the metals and remove them from the solution. The values of moisture content, volatile matter, fixed carbon and ash content as obtained from % proximate analysis are 3.43, 27.07, 65.05, 4.45 for activated carbons prepared from velvet tamarind shells. Ultimate analysis revealed that activated carbons prepared from velvet tamarind shells contained 75% carbon. The surface area and Iodine number of activated carbon from velvet tamarind shell are 570 m2g-1 and 614.7 mgg-1 respectively. The column experimental data revealed that an increase in bed height and initial metal concentration or a decrease of flow rate enhances the longevity of column performance by increasing both breakthrough time and exhaustion time thereby delaying bed saturation. Low ash content and high surface areas are indication of good mechanical strength and microporosity of the activated carbons prepared from this precursor. The activated carbons are inexpensive and appeared to be effective and can be explore for future commercial application for environmental sustainability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call