Abstract

CMK-3 and C-FDU-15 samples were synthesized using hard-templating and evaporation-induced self-assembly (EISA) methods, respectively. The pore structures of CMK-3 and C-FDU-15 as well as commercial activated carbon were characterized by means of X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and N2 adsorption-desorption. Adsorption of NO was investigated by means of thermogravimetric analysis, temperature-programmed desorption of NO + O2, and in situ diffuse reflectance Fourier transform infrared spectroscopy. The results show that the CMK-3 and C-FDU-15 materials possessed ordered and uniform structures. The co-adsorption capacity of NO and O2 decreased in the sequence CMK-3 (88.6 mg/g) > C-FDU-15 (71.7 mg/g) > AC (25.3 mg/g). There were two main adsorption species on CMK-3 and C-FDU-15: nitrite and nitrate. Nitrite is converted to nitrate easily. However, the adsorption species were more complex on AC, with nitrite being the main species. Moreover, CMK-3 and C-FDU-15 exhibit excellent regeneration efficiency compared with AC. The excellent NO adsorption performance of CMK-3 and C-FDU-15 was associated with their ordered mesoporous structures and high surface areas. The research provides more options for NO adsorption in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.