Abstract

Using construction residual soil (RS) as the raw material, RS-derived zeolite (RSDZ) was prepared through a fusion-hydrothermal process. The adsorption performance and mechanisms of RSDZ for Pb2+, Zn2+, and Cu2+ were investigated in single-component and competitive systems. The strong RSDZ X-ray diffraction peaks at 2θ = 12.47, 17.73, 21.65, 28.18, and 33.44°, together with the results of scanning electron microscopy and Fourier transform-infrared spectroscopy (FT-IR) indicated that NaP1 zeolite (Na6Al6SiO32∙12H2O) was successfully synthesised. The Brunauer–Emmett–Teller surface area, average pore size, and cation exchange capacity increased from 9.03 m2∙g−1, 18.85 nm, and 0.12 meq∙g−1 to 47.77 m2∙g−1, 41.60 nm, and 0.61 meq∙g−1, respectively, after the fusion-hydrothermal process. The maximum Langmuir adsorption capacity of RSDZ for Zn2+, Pb2+, and Cu2+ in the unary systems was 0.37, 0.38, and 0.40 mmol·g−1, respectively. Increasing the initial solution pH facilitated the adsorption reaction, and the adsorption performance was stable when pH > 3. The distribution coefficients in the binary and ternary systems indicated that RSDZ had greater affinity for Pb2+ and Zn2+ than for Cu2+ due to the larger ionic radius and relative atomic weight of the former two cations. The relative affinity to Pb2+ and Zn2+ was related to their concentration, with more competitive adsorption of Pb2+ at concentrations higher than 0.4 mmol·L−1 in binary systems and 0.25 mmol·L−1 in ternary systems. X-ray photoelectron spectroscopy and FT-IR analyses indicated that ion exchange was the main mechanism involved in the adsorption of heavy metal ions by RSDZ, accompanied by ligand exchange.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call