Abstract

Commonly used materials incorporated into dynamic culture systems typically show the feature of adsorption of lipophilic xenobiotics. Yet, this phenomenon is strongly limiting the use of dynamic culture models and ex vivo organ perfusions in pharmacological and toxicological research. The aim of the study was to characterize different materials with respect to their capacity for drug adsorption and to find methods or materials to reduce the loss of substrate by adsorption in order to improve the use of dynamic in vitro systems. The adsorption of different xenobiotics (lidocaine, midazolam, lormetazepam, phenobarbital, testosterone, ethoxyresoroufine) to tubes used in dynamic in vitro systems (polyvinyl-chloride, silicone) were investigated and compared to a new material (silicone–coautchouc-mixture). In addition, the role of protein deposition onto the tubing was studied and it was investigated whether it was possible to reach saturation of the inner tube surface by pre-loading it with the test compound. We found that silicone tubes provided the highest comfort with respect to handling and reusability, but they also demonstrated the highest capacity for substrate adsorption. Polyvinyl-chloride was the second best in handling but also demonstrated a high complexity in its adsorption behavior. The silicone–coautchouc-mixture reached acceptable experimental results with respect to its handling and demonstrated a very low capacity for substrate adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.