Abstract

The influence of divalent cations at concentrations of 10-6.0 to 10-4.0 M on the colloidal stability of partially deflocculated allophane by gum xanthan (GX) polysaccharide at pH 6.5 was investigated at two GX concentrations. Experiment in the presence of 10-2.0 g L-1 GX showed that the stability decreased by the addition of divalent cations and the effect of the decrease due to the cationic species was evident in a higher concentration range, i.e., 10-5.0 to 10-4.0 M. The order of the effect was Pb >Zn > Cd > Mg. Experiment in a 10-4.5 g L-1 GX solution revealed that (i) the stability increased by the addition of heavy metal cations at 10-5.0 M (the order of the effect was Pb > Zn > Cd) and decreased at a concentration above 10-4.5 M, (ii) whereas the stability decreased by the addition of Mg ion. The striking difference in the stability behavior due to the difference between the two GX-concentrations was attributed to the (i) degree of GX-adsorption (and hence negative charge from the carboxyl group in GX) onto allophane based on the electrophoretic mobility, (ii) complexation of heavy metal cations by organic ligand (carboxyl group) in GX which was adsorbed onto allophane, and (iii) surface complexation by heavy metal cations and hydroxyl groups on allophane. The results were discussed in relation to the characteristics of the particles of allophane, viz., (i) polymer-coated soft particles, and (ii) semi-soft particles on which the rigid (hard) surface of allophane substantially remained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call