Abstract

The kinetically controlled, selective removal of water from ethanol vapors by desiccants is well documented. However, studies on the removal of water by liquid-phase contacting of water−ethanol mixtures with starch-based material are limited. This research presents a screening study that shows that starch-based adsorbents remove liquid-phase water between 1 and 20 wt % from ethanol without the adsorbent being dissolved. The mass of water adsorbed per gram of dry adsorbent increases with increasing water content. Side by side comparisons of these starch-based adsorbents to silica gel and molecular sieves show that, in a kinetically controlled adsorption scheme below 10 wt % water, the inorganic desiccants have a greater operational (nonequilibrium) adsorption capacity per gram. At water concentrations at or above 10% water, however, the operational adsorptive capacity per gram of the starch-based adsorbents is roughly equivalent to the inorganic adsorbents, when using the same regeneration and adsorption conditions. The starch-based adsorbents adsorb water by forming hydrogen bonds between the hydroxyl groups on the surface of the adsorbent and the water molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.