Abstract

The kinetic, thermodynamic and isotherm modeling studies were carried out on adsorptive removal of Victoria blue (VB) dye using activated carbon, Ba/alginate and modified carbon/Ba/alginate polymer beads. The feasibility of sorption process was determined by varying the experimental parameters viz., dye concentration (4–20mgL−1), contact time (10–90min), pH (3–10), adsorbent dose (0.5–2.5g) and temperature (303–343K). Freundlich and Langmuir isotherms were determined and ascertained with the dimensionless separation factor (RL). Lagergren's pseudo-first order, pseudo-second order and intraparticle diffusion model equations were used to analyze the kinetics of the adsorption process. The thermodynamic consistency of adsorption was found with Gibbs free energy (ΔG°), changes in enthalpy (ΔH°) and entropy (ΔS°) were calculated using the Van’t Hoff plot. The polymer beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and their morphology was determined by scanning electron microscopy (SEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.