Abstract

The adsorption of submonolayer V on an idealized model hematite (0 0 0 1) surface and subsequent oxidation under atomic O adsorption are studied by density functional theory. The preferred adsorption sites, adsorption energy and configuration changes due to V and O adsorption are investigated. It is found that in most cases V forms threefold bonds with surface O atoms, inducing a large geometry change at the hematite surface and near surface region and a bond stretch between surface Fe and O. The adsorption energy is mainly decided by interplay between adsorbed metal-surface oxygen bonding and adsorbed metal – subsurface metal interaction. The relative energy of subsequent O adsorption and geometry depends on the reformed V/hematite structure. Electronic properties such as projected densities of states and chemical state change upon V adsorption are studied through both periodic slab and embedded cluster localized orbital calculations; both strong vanadium–oxygen and vanadium–iron interactions are found. While V generally donates electrons to a hematite surface, causing nearby Fe to be partially reduced, the Fe and V oxidization state depends very much on the coverage and detailed adsorption configuration. When the V/hematite system is exposed to atomic O, V is further oxidized and surface/near surface Fe is re-oxidized. Our theoretical results are compared with X-ray surface standing wave and X-ray photoelectron spectroscopic measurements. The influence of d-electron correlation on the predicted structures is briefly discussed, making use of the DFT + U scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call