Abstract
Magnetic magnesium-zinc spinel ferrite Mg1 - xZnxFe2O4 (where x = 0.4, 0.6, and 0.8) was investigated as adsorbent for the efficient removal of Sr(II) ions and salicylic acid (SA) contaminants from aqueous medium. The characterization of ferrites was carried out using XRD, VSM, BET, SEM, and EDS. The surface charge of magnetic adsorbents was measured by the drift method. The determination of SA and Sr(II) ion concentrations in the solution phase was carried out by UFLC and complexometry, respectively. It was shown that varying of the Zn(II) content affected the adsorption capacities of magnesium-zinc ferrites. The increasing of zinc content from x(Zn2+) = 0.4 to x(Zn2+) = 0.6 increased the adsorption of Sr(II) ions from 50 to 65mg/g, and then it was decreased to 36mg/g for the sample with x(Zn) = 0.8. The Mg0.4Zn0.6Fe2O4 sample demonstrated the maximum adsorption capacity of 74mg/g. The adsorption isotherm for Sr(II) was fitted by the Dubinin-Radushkevich, Langmuir, Freundlich, and Sips models. The adsorption kinetics of Sr(II) was analyzed by PFO, PSO, and Elovich models. The adsorption kinetics of SA was also investigated. It was demonstrated that the Mg0.2Zn0.8Fe2O4 sample exhibited 90% removal of salicylic acid from the water solutions. The results demonstrated that magnetic Mg-Zn ferrites with spinel structure are good sorbents for the removal of SA and Sr(II) ions from aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.