Abstract
The adsorption behavior of ions at liquid-vapor interfaces exhibits several unexpected yet generic features. In particular, energy and entropy are both minimum when the solute resides near the surface, for a variety of ions in a range of polar solvents, contrary to predictions of classical theories. Motivated by this generality, and by the simple physical ingredients implicated by computational studies, we have examined interfacial solvation in highly schematic models, which resolve only coarse fluctuations in solvent density and cohesive energy. Here we show that even such lattice gas models recapitulate surprising thermodynamic trends observed in detailed simulations and experiments. Attention is focused on the case of two dimensions, for which approximate energy and entropy profiles can be calculated analytically. Simulations and theoretical analysis of the lattice gas highlight the role of capillary wave-like fluctuations in mediating adsorption. They further point to ranges of temperature and solute-solvent interaction strength where surface propensity is expected to be strongest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.