Abstract

Soil is the largest terrestrial carbon pool, and adsorption of soil organic matter (SOM) by ferrihydrite is an essential geochemical process for preservation of organic carbon in soil. Freshly formed gel-like ferrihydrite and seasonally dried dense ferrihydrite are two typical morphologies of ferrihydrite in soil. However, the differences in SOM adsorption by gel-like ferrihydrite and dense ferrihydrite and the underlying mechanisms are unknown. In this study, adsorption of eight SOM or SOM-like compounds by gel-like ferrihydrite and dense ferrihydrite were compared. It was observed that the adsorption capacity of SOM by gel-like ferrihydrite (e.g., 304 mg C/g) was two orders of magnitude higher than that by dense ferrihydrite (e.g., 3.44 mg C/g). SOM adsorbed by the nanosized gel-like ferrihydrite could be mainly attributed to the heteroaggregation, confirmed by not only the TEM images but also the positive linear correlation between adsorption capacity and molecular weight of SOM. However, SOM adsorbed by the microsized dense ferrihydrite should be attributed to the pore-filling adsorption with molecular sieve effects, confirmed by the negative linear correlation between adsorption capacity and molecular weight of SOM. The obtained results could provide a new insight to understand the preservation of organic carbon by ferrihydrite in soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call