Abstract

We explore the formation of C60 sodium and C60 cesium complexes in superfluid helium nanodroplets. Anomalies in mass spectra of these doped droplets reveal anomalies in the stability of ions. (C60) m Cs+ n ions ( m ≤ 6) are particularly abundant if they contain n = 6m + 1 cesium atoms; (C60) m Cs2+ n dications ( m ≤ 3 or 5) are abundant if n = 6m + 2. These findings are consistent with the notion that alkali metal atoms (A) transfer their valence electrons into the three-fold degenerate lowest unoccupied orbital of C60, resulting in particularly stable C60A6 building blocks. However, (C60) 4CsCs2+ n dications display an entirely different pattern; instead of an expected anomaly at n = 6 × 4 + 2 = 26 we observe a strong odd-even alternation starting at n = 6. Also surprising is the effect of adding one H2O or CO2 molecule to (C60) m Cs n mono- or dications; anomalies shift by two units as if the impurity were acting as an acceptor for two valence electrons from the alkali metal atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.