Abstract

Adsorption of short linear heteropolymers in slitlike pores is studied using the density functional theory and Monte Carlo simulations. The molecules are assumed to be freely jointed tangent hard spheres. The segments have different affinity with regard to the walls. Each molecule contains one surface-binding segment that interacts with the walls via Lennard–Jones ( 3 , 9 ) potential and a number of segments interacting with surfaces via the hard-wall potentials. A position of the surface-binding segment in the chain can be arbitrarily chosen. We have studied the influence of the pore width, the chain length and the chemical structure of molecules on adsorption and the microscopic structure of the confined fluid. The theoretical predictions are compared with Monte Carlo simulations carried out for different ‘isomeric’ pentamers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.